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Abstract—We present a study of scientific data analytics on
heterogeneous architectures using the Legion runtime system.
Legion is a new programming model and runtime system
targeting distributed heterogeneous architectures. It introduces
logical regions as a new abstraction for describing the struc-
tures and usages of program data. We describe how to leverage
logical regions to express important properties of program
data, such as locality and independence, for scientific data
analytics that can consist of multiple operations with different
data types. Our approach can help users simplify programming
on the data partition, data organization, and data movement
for distributed-memory heterogeneous architectures, thereby
facilitating a simultaneous execution of multiple analytics oper-
ations on modern and future supercomputers. We demonstrate
the scalability and the usability of our approach by a hybrid
data partitioning and distribution scheme for different data
types using both CPUs and GPUs on a heterogeneous system.
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I. INTRODUCTION

The high computation expense of large-scale scientific
applications has stimulated the advance of supercomputing
systems over the last few decades. Through parallelism,
higher performance and throughput have been achieved to
enable scientists to simulate complex physical and chem-
ical phenomena at an unprecedented scale. However, few
frameworks have been established to allow effective analysis
of large-scale scientific simulation data on modern parallel
architectures that use both heterogeneous processors and
deep, complex memory hierarchies. Besides the problem of
division and assignment of computation in parallel program-
ming, one of the most difficult issues may be the place-
ment and movement of data, especially in heterogeneous,
distributed machines with deep memory hierarchies:

First, communication costs are a critical issue for parallel
system and software designers to consider. The selection
of a parallel algorithm has a major impact on communi-
cation requirements between compute nodes. In practice, a
scientific analytics workflow typically consists of multiple
operations that intrinsically incur different communication
or data movement requirements between compute nodes.

Second, the latest supercomputers are increasingly com-
plex and often are composed of deep, distributed memory
hierarchies and heterogeneous processing units [1]. With
an increasingly demand on suitable analytics capabilities
to explore large data at high interactivity and fidelity, we
hope to make use of all processing units on supercomputers.

However, having the data organized correctly within the
machine is becoming even more difficult. In a scientific
data analytics circumstance, we may need to partition data
on a 2D image space for visualization or on a 3D object
space for statistical analysis. An appropriate organization
of the data on a complex heterogeneous memory hierarchy
becomes a big challenge and has a significant impact on the
performance and scalability of an analytics workflow.

Although many techniques have been proposed to tackle
the heterogeneity of supercomputers, most efforts have fo-
cused on the improvement of the scalability of specific
techniques, while the usability has not been fully investi-
gated. When using these techniques, programmers may be
still required to explicitly address complex data partitioning
and distribution across heterogeneous processors. Therefore,
it is often a non-trivial task to apply these techniques
to build an analytics workflow in practice. Legion is a
programming model and runtime system for describing
hierarchical organizations of both data and computation at
an abstract level [2]. Unlike other programming systems
where these properties are managed by programmers, Legion
provides abstractions for programmers to explicitly declare
properties of program data including organization, parti-
tioning, privileges, and coherence. Furthermore, Legion can
implicitly extract parallelism and issue the necessary data
movement operations in accordance with the application-
specified data properties, thereby removing a significant
burden from programmers [3]. A separate mapping interface
allows programmers to control how data and computation
are placed onto the actual memories and processors of a
specific machine.

In this paper, we investigate the feasibility of using
Legion to perform analytics for large-scale scientific data
on heterogeneous processors. We implement a parallel sci-
entific data analytics framework running on both GPUs
and CPUs architectures using the Legion runtime system.
We describe the mechanism of expressing data locality and
independence provided by logical regions in the Legion
programming model. Our solution makes it easy for users
to implement a complex analytics workflow consisting of
multiple operations with different data types, but ignores
the data management details (e.g., data partitioning and
distribution, data communication, etc.). We illustrate this
framework using several representative analytics operations,
and present the experimental results on a heterogeneous
supercomputer.
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II. RELATED WORK

A. Parallel Computer Memory Architectures

There are three memory architectures commonly used in
parallel computing: shared memory, distributed memory and
hybrid distributed-shared memory [4]. Shared memory paral-
lel programming models are commonly based on threads that
have both private and shared variables (e.g., OpenMP [5]). In
a distributed memory system, each processor only accesses
limited memory. Message Passing Interface (MPI) is often
used to exchange data among processors through communi-
cations. Data transfer usually requires cooperative operations
to be performed by each processor [6].

The largest and fastest computers in the world today em-
ploy both shared and distributed memory architectures [7].
Typically, memory is shared among multiple cores and/or
graphics processing unit (GPU) within a node, while multi-
ple nodes are inter-connected via networking. Current trends
seem to indicate that this memory architecture will continue
to prevail and increase at the high end of computing for the
foreseeable future. Hybrid memory system combines the ad-
vantages of shared memory and distributed memory systems,
but also significantly increases programming complexity.

B. Modern Parallel Languages

Most modern parallel languages have mainly focused
on providing language-based approaches to specify con-
currency and data distributions. The most seminal works
are X10 [8], Chapel [9], Fortress [10] and Sequoia [11].
X10 is an Asynchronous Partitioned Global Address Space
(APGAS) language featuring task parallelism and locality
control by the usage of places [8], [12]. Chapel is an
emerging programming language designed for productive
parallel computing at scale [9]. Chapel’s locale type enables
users to specify and reason about the placement of data and
tasks on a target architecture in order to tune for locality
and affinity. Sequoia gives a programmer explicit control
over data locality and communication for programming
machines with multi-level memory hierarchies. It abstractly
exposes hierarchical memory in the programming model and
provides language mechanisms to describe communication
vertically through the machine and to localize computation
to particular memory locations within it [11].

Another programming system that makes use of an ex-
plicit mapping interface is the Halide language and com-
piler [13] for describing and optimizing image processing
pipelines. Halide programs express operations that are per-
formed on two-dimensional images and the Halide compiler
optimizes the implementation of these pipelines for different
architectures.

C. Scientific Data Analytics

Researchers have developed scalable solutions for indi-
vidual analytics operations, such as rendering [14]–[16],
querying [17]–[20], and so on. However, in practice, a

scientific data analytics workflow can consist of multiple
operations, which requires researchers to holistically ad-
dress different data management requirements for different
operations. Bennett et al. [21] presented a combined in-
situ and in-transit framework to support multiple large-scale
scientific analytics operations (e.g., visualization, statistics,
and topological analysis). Sun et al. [22] used applica-
tion knowledge to adaptively place data for staging-based
coupled scientific workflows. Although the effectiveness of
these approaches has been demonstrated with real-world
large-scale applications, they were mainly developed for
conventional distributed CPU-based architectures.

Researchers have also developed techniques for optimiz-
ing data processing on heterogeneous systems. For example,
Wu et al. [23] presented pipeline frameworks to execute
different operations on heterogeneous cloud computing en-
vironments. Pérez et al. [24] developed an OpenCL-based
library to simply programming and load balancing of data
parallel applications on heterogeneous systems. Breß et
al. [25] used a hardware-oblivious data processing engine
to optimize the operator placement in a heterogeneous
hardware environment. However, these techniques targeted
comparably small scale systems, and cannot be directly
applied on large heterogeneous supercomputers.

III. THE LEGION PROGRAMMING MODEL

Today’s machines often have more than one type of
processors (e.g., CPUs and GPUs) and future architectures
will likely have specialized accelerators. Legion is a pro-
gramming model and runtime system designed for decou-
pling the specification of parallel algorithms on distributed
heterogeneous architectures [2].

Legion manages heterogeneity by allowing code to be re-
targeted to different types of processors. Because running
on the target class of machines requires distributing both
computation and data, Legion presents the abstraction of
logical region for describing the structure of program data.
Logical regions allow programmers to express both locality
in data structures and independence between tasks that use
disjoint logical regions. Given the knowledge of both the
structures of tasks and data within the program, Legion can
assist a programmer in solving the common programming
burdens:
• Discovering/verifying the correctness of parallel execu-

tion: It is often difficult to determine when two tasks
can run in parallel without a data race. Legion provides
mechanisms to construct both implicit and explicit par-
allel task launches. For implicit constructs, Legion can
automatically discover parallelism. For explicit constructs,
Legion can notify the programmer if there are potential
data races between tasks intended to run in parallel.

• Managing communication: When Legion determines that
there are data dependencies between two tasks executed
in different locations, Legion can automatically insert the
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necessary data copies and apply the necessary constraints
so the second task will not run until its data is available.
The Legion programming model is designed to abstract

computations and makes them portable across many different
potential architectures [2]. The challenge is to make it easy
to map the abstracted computation of the program onto
actual architectures. At a high level, mapping a Legion
program needs making two kinds of decisions:
• For each task, select a processor on which to run the task.
• For each logical region, a task needs to select a memory in

which to create and use a physical instance of the logical
region.
To facilitate this process, Legion introduces a novel run-

time mapping interface [1]. The mapping API can be used
to specify on which processor each task will run. This al-
lows the programmer to manage heterogeneity by explicitly
running tasks on the best suitable processor. Furthermore,
for each logical region required by a task, the mapping API
allows the programmer to specify where the physical data for
that logical region should be placed in the memory hierarchy.
The runtime then handles all the copies necessary for moving
data in the memory hierarchy. The mapping API is crucial
to making Legion programs portable.

IV. PARALLEL SCIENTIFIC DATA ANALYTICS
FRAMEWORK USING LEGION

When writing applications for distributed-memory parallel
architectures, users must partition their data to enable par-
allel execution. As memory hierarchies become deeper, the
latest supercomputers are now composed of heterogeneous
processors and have multiple levels of memory, most of
which are explicitly managed by software [26]. Thus, it
is increasingly necessary for users to partition the data
hierarchically. However, most current parallel programming
languages perform this hierarchical partitioning statically,
which excludes many important applications where the
partitioning is data dependent and it must be computed
dynamically. It is desired that users can be provided with
a simplified data management, and do not need to handle
the data duplication and partition problem. To this end, we
present a parallel framework to illustrate how we can express
computations with dynamically determined relationships be-
tween computations and data partitions based on the Legion
programming language.

A. Mapper Interface

The goal of our parallel framework is to optimize com-
putation performance by assigning operations to CPUs and
GPUs heterogeneous processors and allowing them to work
simultaneously. To achieve this goal, we design a custom
mapper based on Legion’s mapper interface to map opera-
tions onto target hardware and specify which memories are
used to host the physical instances of the logical regions
requested by such operations. Figure 1 shows the mapper

Figure 1. A custom mapper based on Legion’s mapper interface
in our framework to assign operations among CPUs and GPUs.

Figure 2. Data partition and subregion assignment among the
processors.

interface in our framework where we assign a set of op-
erations to different CPU and GPU subsets. We denote an
operation set as OP = {op1, ...,opv}, a CPU set as CPU =
{cpu1, ...,cpum}, and a GPU set as GPU = {gpu1, ...,gpun},
where |OP| = v, |CPU | = m and |GPU | = n denote the
numbers of operations, CPUs, and GPUs respectively. We
determine the assignment between processor types and op-
erations using Legion’s mapper interface. An operation opi
is assigned to CPUsi and GPUsi processed simultaneously,
where CPUsi ⊆CPU and GPUsi ⊆ GPU are the subsets of
CPU and GPU respectively.

B. Region Construction and Task Scheduling

As we hope an operation opi can be processed by CPUs
and GPUs simultaneously, we divide it into two independent
operations and assign them to a subset of CPUs and GPUs
respectively: opci that is assigned to the CPU subset CPUsi,
and opgi that is assigned to the GPU subset GPUsi. After
determining the assignment between an operation and a
processor type, we need to partition the data associated
with each operation in order to parallelize the operation on
multiple instances of the assigned processor types.

For a general process of a parallel framework, we divide
the input data into two portions: One portion is processed
by opci on CPUs and another portion is processed by opgi
on GPUs. The partition ratio r between the data on CPUs
and GPUs is assigned by users. We further divide each
portion into a set of uniform blocks, and each processor
is responsible for processing one block. We express one
partition using one logical region. Conceptually, a logical
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region can be expressed as a 2D table. The row entries
in the logical region are defined as index space, which
can be considered as the key of the logical region. The
column entries in the logical region are defined as field
space. Each field is defined by a pair of values: a unique
name for the field (usually an integer) and the type of
the field. Figure 2 shows the main steps of the process
of our framework to make an operation opi processed on
heterogeneous processors:
1) We construct an index space of the logical region for the

input data of each operation.
2) We construct a field space for the logical region. We

allocate the field space for each portion of data.
3) We create a logical region using the index space and the

field space defined in the previous two steps.
4) We create a corresponding physical region to hold the

physical instances (i.e., the real values for the input data).
5) We use coloring to partition a logical region. We denote

the partitions of a logical region as logical partition =
{l p1, ..., l pp}, where |logical partition|= p is the num-
ber of the logical partitions. Colorings are objects that
describe an intended partition of an index space. Tech-
nically, a coloring is a map from colors to sets of points
in an index space. For structured index spaces, colorings
are maps from colors to Cartesian groups of points.

6) We execute operations on GPUs and CPUs according to
the previous mapper interface we designed. We provide
parallel CPU and GPU codes to make our program
portable to different architectures. First, we need to define
an enumeration for storing the IDs that we will direct the
Legion runtime to associate with each operation. Second,
we register operations with the Legion runtime.

Listing 1 shows the code to register tasks on CPUs and
GPUs. In Line 6, the processor kind decides the operation
run on latency-optimized cores (i.e., CPUs) or throughput-
optimized cores (i.e., GPUs), the boolean single means that
the operation can be performed as an individual operation,
and the index allows the operation be preformed as an index
space operation. We register opgi on GPUs and register opci
on CPUs (Lines 8 and 9). We import the TaskHelper
namespace into the current program helping operation
registration and dispatch using templates. The regis-
ter_cpu_variants and register_gpu_variants
are used to register either the CPU-only or GPU-only
variants of operations respectively. The dispatch_task
function is used to launch tasks. Legion also provides Fu-
tureMap types as a mechanism for managing the many re-
turn values that are returned from an index space task launch.
FutureMap objects store a future value for every point in
the index space task launch. Since opgi and opci are indepen-
dent with each other, we can dispatch them simultaneously,
and obtain the two return values f mgi and f mci (Lines 15
and 16). We use fm_gi.wait_all_results() and
fm_gi.wait_all_results() to wait for all given

operations to complete.

Listing 1
REGISTERING TASKS IN THE MAIN FUNCTION

1 int main(int argc,char∗ argv[]){
2 HighLevelRuntime::set_top_level_task_id
3 (TOP_LEVEL_TASK_ID);
4 HighLevelRuntime::register_legion_task<top_level_task>
5 (TOP_LEVEL_TASK_ID,
6 Processor::LOC_PROC, true/∗single∗/, false/∗index∗/,
7 AUTO_GENERATE_ID, TaskConfigOptions(),

"top_level");
8 TaskHelper::register_gpu_variants<op_gi>();
9 TaskHelper::register_cpu_variants<op_ci>();

10 }
11 //TaskHelper namespace
12 namespace TaskHelper {
13 template<typename T>
14 FutureMap dispatch_task(T &launcher, Context ctx,

HighLevelRuntime ∗runtime){
15 FutureMap fm = runtime−>execute_index_space(ctx,

launcher);
16 return fm;
17 }
18 //CPU implementation of the operation
19 template<typename T>
20 void base_cpu_wrapper(const Task ∗task,
21 const std::vector<PhysicalRegion>

&regions,
22 Context ctx, HighLevelRuntime

∗runtime){
23 T::cpu_base_impl(task, task−>local_args, regions, ctx,

runtime);
24 }
25 //GPU implementation of the operation
26 template<typename T>
27 void base_gpu_wrapper(const Task ∗task,
28 const std::vector<PhysicalRegion>

&regions,
29 T::gpu_base_impl(task, task−>local_args, regions, ctx,

runtime);
30 }
31 //register tasks on CPUs
32 template<typename T>
33 void register_cpu_variants(void){
34 HighLevelRuntime::register_legion_task<base_cpu_wrapper<T>

>(T::TASK_ID, Processor::LOC_PROC,
false/∗single∗/, true/∗index∗/, CPU_LEAF_VARIANT,
TaskConfigOptions(T::CPU_BASE_LEAF),
T::TASK_NAME);

35 }
36 //register tasks on GPUs
37 template<typename T>
38 void register_gpu_variants(void){
39 HighLevelRuntime::register_legion_task<base_gpu_wrapper<T>

>(T::TASK_ID, Processor::TOC_PROC,
false/∗single∗/, true/∗index∗/, GPU_LEAF_VARIANT,
TaskConfigOptions(T::GPU_BASE_LEAF),
T::TASK_NAME);

40 }
41 };

V. EXAMPLES

Our framework allows us to easily configure and execute
multiple operations simultaneously on CPUs and GPUs. We
show the detailed design by examples of a few but repre-
sentative analytics operations, including entropy analysis and
parallel volume rendering, on scientific volume data.
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Entropy has been used to measure the information content
of a variable [27]. Given a discrete random variable X and
a probability mass function p(x), x ∈ X , the entropy of X
can be obtained as:

H(X) =−∑
x∈X

p(x) log p(x), (1)

where p(x) ∈ [0,1], −∑x∈X p(x) = 1.0, and − log p(x) de-
notes the information associated with a single occurrence of
x. For a scientific volume dataset, we partition it into a set
of blocks, and compute entropy for each block to quantify
the distribution of its variables. A data block with a higher
value of H(X) has more information.

Parallel volume rendering offers a viable solution to
the large data visualization problem by distributing both
data and rendering computations among multiple processing
units. Parallel rendering algorithms, regardless of hardware
architecture, consist of three categories first proposed by
Molnar [28], named sort-first, sort-middle and sort-last,
depending on how the volume data is sorted from object
space to screen space.

In sort-first and sort-middle algorithms, each processor is
assigned a sub-image space and is responsible for rendering
partial volume data that lies in its assigned image space.
During viewpoint changes, either some of the volume data
must be transferred among processors or the data must be
replicated on all processors. By comparison, in sort-last
algorithms, each processor only needs to hold a fraction of
the volume data that never needs to be transferred between
processors, thereby avoiding communication during local
rendering. However, an image compositing process is needed
to combine all local partial images into a final image, which
requires inter-processor communication. Stompel et al. [29]
surveyed the methods for sort-last compositing and Cavin et
al. [30] analyzed the relative theoretical performance of these
methods. These overviews show that compositing algorithms
usually fall into one of two categories: the direct-send based
methods [31], [32] and the tree based methods [33].

With increasingly complex datasets, domain scientists
often need to conduct detailed data analysis while perceiving
volume rendering. In our examples, we add entropy analysis
to show the process of assigning multiple operations using
our framework.

A. Sort-last Parallel Volume Rendering with Entropy Anal-
ysis

In the sort-last parallel volume rendering algorithm, we
first partition a volume data among compute nodes. Each
compute node renders its local volume data using the ray
casting method. Then, parallel image compositing is con-
ducted to blend all partial images into a final image. We also
perform entropy analysis using a block-based partitioning.

(a)

(b)

Figure 3. Two different assignments of ray casting, entropy
analysis, and image compositing among CPUs and GPUs.

1) Mapper Interface: Local ray casting and parallel im-
age compositing are the two main operations of the sort-
last algorithm. Entropy computation is another operation for
data analysis that can be independent as sort-last rendering.
Given a set of CPUs and GPUs, we determine the assign-
ment between processor types and operations using Legion’s
mapper interface. Figure 3 shows two examples in that we
can assign the ray casting operation either to the GPUs or
to the GPUs and a part of CPUs, and assign the entropy
operation and the image compositing operation to the CPUs,
given the relatively higher cost of ray casting.

The primary purpose of the Legion mapper is to decide
how operations are assigned to processors and which mem-
ories are used to host the physical instances of the logical
regions requested by the operations. We first define a mapper
interface RayMapper derived from the default mapper of
Legion. We override the map_task method of the mapper
to create a ranking of memories in which we attempt to
place physical instances for each region requirement of an
operation, and provide the mapper the flexibility to specify
which data should be placed close to the processors and
which data can be left further away. To aid the mapper
in decision making, the Legion runtime also provides the
information for each region requirement about the available
physical instances as well as which fields are already valid
for these physical instances.

In our sort-last volume rendering, the ray casting op-
eration is performed on GPUs and requires the memories
for the input volume data and the output image. We select
the GPU framebuffer memory for the volume data that is
close to GPU, and select the zero-copy memory for the
image data that will be accessed by both GPUs and CPUs.
The zero-copy memory in Legion is the memory mapped
to both GPU’s address space and CPU’s system memory
(i.e., DRAM), and thereby is accessible by both GPUs and
CPUs on the same node. The image compositing operation
is performed on CPUs, and we select DRAM for the image
data. We also select DRAM for the entropy operation.
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Figure 4. A sort-last parallel rendering process using legion.

2) Region Construction and Task Scheduling: After deter-
mining the assignment between an operation and a processor
type, we need to partition the data associated with the
operation in order to parallelize the operation on multiple
instances of the assigned processor type.

We divide the 3D volume into a set of uniform 3D blocks,
and each processor is responsible for rendering one block.
In addition, we do not divide the 2D image. We express the
volume partition using one logical region. We illustrate the
whole process based on Legion in Figure 4.

In the first step, as shown in Figure 4, we construct
the index space of the logical region for the volume
and the 2D image. We create a 3D volume from (0, 0,
0) to (vol_Width-1, vol_Height-1, vol_Depth-
1) for the volume and create a 2D rectangle from (0, 0)
to (img_Width-1, img_Height-1) for the 2D image,
where vol_Width, vol_Height, and vol_Depth de-
note the size of the 3D volume while img_Width and
img_Height represent the size of a 2D image. Then, we
create the index space vol_index_space for the 3D
volume and img_index_space for the 2D image from
the Legion runtime and context. We note that we use the
Legion structured index space because it is more suitable
for dense keys such as Cartesian grids. Legion also provides
unstructured index space for more generic partitioning.

In the second step, we construct the field space of the
logical region. In volume rendering, the data type of each
image pixel is a 4-tuple of float data (i.e., an RGBA color),
while the data type of the 3D volume data is float. Here,
we allocate the field space img_filed_space for the
partial images and one final image, as well as the field space
vol_field_space for a volume data.

In the third step, we construct the logical region using the

index space and the field space defined in the previous two
steps. Each volume (image) logical partition consists of an
index LogicalPartitionID, the start position Start,
and the offset Offset within the whole volume (image).

In the fourth step, we create two physical regions to hold
the physical instances (i.e., the real values in the volume data
and 2D image). Specifically, we first create two requests for
physical regions of the 2D image and the 3D volume with
READ_WRITE privileges and EXCLUSIVE coherence, and
then we add the fields created in the second step.

In the fifth step, we create the partitions in the logical
regions using coloring. We divide a 3D volume into a
set of uniform 3D blocks, and use a DomainColor-
ing object to record our coloring. The return value is
an IndexPartition object that is the handle to the
partitioned volume index space. We also generate an array
of subregions of the volume data. For each subregion,
the get_logical_subregion_by_color function of
Legion helps us associate a color space domain with each
index sub-space we wish to make.

In the sixth step, we provide both parallel GPU and CPU
rendering code to make our program portable to different
architectures. In this example, we register our ray casting
operation on GPUs or GPUs and CPUs, and register the
image compositing and the entropy analysis only on CPUs,
as shown in the Tasks table in Figure 4. Then, we execute the
operations on the processing units according to the mapper
interface we designed. As shown in Figure 4, the mapper
assigns each logical partition to the corresponding tasks.

Our design pattern in Legion is to employ C++ classes to
encapsulate the Legion operations. Instances of the class will
describe launcher objects for launching operations, while
static members functions will be used to give the many
variant implementations of the operations.

3) Region Construction and Task Scheduling for Image
Compositing: The final step in sort-last parallel rendering
is to blend all partial images into a final image. In our
design, we partition the 2D image index space into uniform
2D grids, and each CPU node is responsible for computing
the blended color of an image partition separately and ef-
ficiently by direct-send parallel image compositing method,
and writing the results to the final image’s physical region.
The underneath communication in image compositing tradi-
tionally is a challenging task to be tackled [29], which is
handled by Legion in our solution.

B. Sort-first Parallel Volume Rendering

Recall from the sort-first algorithm, we divide the 2D im-
age into uniform 2D grids, and each processor is responsible
for the rendering of an image partition. In addition, we do
not divide the 3D volume data (i.e., only one partition), and
assume that it can be accessed by each processor via shared
memory. Although the data partitioning and distribution
requirements are significantly different between the sort-last
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and sort-first algorithms, we can also easily implement the
sort-first algorithm in our framework.

1) Mapper Interface: In sort-first parallel rendering, we
do not need image compositing, and ray casting is the only
one task. We assign the ray casting task to GPUs using
Legion’s mapper interface.

2) Region Construction and Task Scheduling: In the first
step, we construct the same index space as in the first step
of sort-last parallel rendering. However, in the second step,
the constructions of the field spaces regions for the image
and the volume are much easier than the sort-last algorithm.
This is because we need only one field space for a 2D image
and another field space for a 3D volume, partition this 2D
image into even grids, and distribute each grid on a node to
execute volume rendering in sort-first parallel rendering. In
the third step, we use the same method in the third step of
sort-last parallel rendering to construct the logical regions
for a 2D image and a 3D volume. After we defined logical
regions, we create physical regions for the 2D image and the
3D volume in the fourth step, which is similar to sort-last
parallel rendering.

In the fifth step, we create the partitions in the 2D
image logical region using coloring. We divide a 2D image
into a set of uniform 2D regions. As the same method
used in the sort-last algorithm, we use a DomainCol-
oring object to record our coloring. The return value
is two IndexPartition objects that are the handles
to the image and volume index spaces. For each sub-
region get_logical_subregion_by_color function
helps us associate a color space domain with each index sub-
space in the 2D image.

The last step is to execute ray casting sort-first parallel
rendering on GPUs according to the setting in the mapper
interface. We use almost the same main function of sort-
last parallel rendering to register tasks, and register another
image producing task.

C. Discussion

The sort-first and sort-last algorithms have considerable
differences on data partitioning and distribution require-
ments [28], and their implementations are often diverse in
existing work. Our framework can implement them in a
similar manner. In addition, it is easy to add other oper-
ations (e.g., entropy analysis) with completely different data
requirements in our framework. This shows that our solution
provides a simple and feasible way to incorporate different
operations in a unified framework using logical regions.

VI. EXPERIMENTS AND RESULTS

We present our experimental results on Titan, a Cray
XK7 supercomputer located at the Oak Ridge Leadership
Computing Facility. Each node of Titan contains one 16-
core AMD Opteron CPU and a NVIDIA Tesla K20 GPU.

(a) (b)

(c) (d)

Figure 5. (a): the time breakdown of sort-first parallel volume
rendering for a different number of nodes. (b): the data partition
time. (c): the rendering time. (d): the data movement time. The
output image resolutions are 10242 and 20482, respectively.

(a) (b)

(c) (d)

Figure 6. (a): the time breakdown of sort-last parallel volume
rendering for a different number of nodes. (b): the data partition
time. (c): the rendering time. (d): the image compositing time. The
output image resolutions are 10242 and 20482, respectively.

We first tested our sort-first and sort-last parallel ren-
dering implementations, and conducted scalability compar-
isons using a combustion dataset with the resolution of
1600×1372×430. We tested between 1 to 256 processors
with two output image resolutions of 10242 and 20482. We
compared the algorithms in the worst case, where all pixel
data are considered for rendering and compositing and where
we did not implement any optimization techniques.

Figures 5 and 6 show the overview time breakdown, data
partition time, rendering time, and data movement time on
a different total number of nodes for sort-first rendering and
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Figure 7. The rendering time and data movement time of sort-
first rendering for 64 nodes from multiple view angles. The output
image resolution is 10242.

(a) (b)

Figure 8. The time results of sort-first (a) and sort-last (b) parallel
rendering on any number of nodes from 1 to 256. The output image
resolution is 10242.

sort-last rendering, respectively. In sort-first rendering, the
rendering times are reduced as the increase in the number
of nodes. This is because the more number of nodes sharing
the work, the smaller number of rays would be cast into
the volume, which contributes to less workload on each
node. However, data movement times are relatively high
as the increase in the number of nodes. By comparison,
in sort-last volume rendering, the rendering times are also
dramatically decreased with the increase of the number of
nodes, but we do not need to pay the cost of data movement.
We used the parallel direct send method to realize image
compositing task and obtained ideal image compositing time
here. We achieved the scalable rendering performance for
both algorithms.

From Figure 5 (b) and Figure 6 (b), we found that data
partition in our experiment is relatively slow. There are
two reasons leading to this cost. First, creating index space
and field space and the data partition are processed in the
top level task which only processed on one CPU. Second,
Legion has not provided parallel file read functions yet, but
treated them as just another kind of physical instance in a
“disk” memory. Only “attach” and “detach” operations for
files are provided for HDF5 files thus far. However, we note

Figure 9. The time results of ray casting and entropy analysis with
various ratios on allocation. The output image resolution is 10242.

that data partition is only a one-time cost for interactive
rendering.

Figure 7 shows interactive rendering time and data move-
ment time of sort-first parallel rendering for 64 nodes. The
output image resolution is 10242. There are total seven
interaction steps (i.e., seven view angles), and in Figure 7 we
only attached four output images derived from the steps 1, 3,
5, and 7, respectively. As shown in Figure 7, the rendering
time is relatively stable with the range from 0.56 to 0.9
seconds. The data movement time during the first five steps
is decreased and increased in the last two steps. This is
because we changed larger view angles during the final two
steps than the previous ones.

Figure 8 shows the rendering time results of sort-first and
sort-last parallel rendering on any number of nodes from 1
to 256. The output image resolution is 10242. As shown in
the image (a), the rendering time is imbalanced, and a few
of nodes are idle. The reason is that we did not use any
optimized image partition method here, and only distribute
one image brick to each node to process, so a few of nodes
render the occluded area in the 2D image. By comparison,
as shown in the image (b), the rendering times of sort-last on
each node are nearly balanced, because we evenly partition
the workload into small volume cubes and distribute each
one to one node.

In general, sort-last rendering can achieve more scalable
performance, and sort-first rendering inherently requires data
movement [28]. Without conducting any special optimiza-
tion and tackling physical data management, our framework
can easily implement these two renderings and achieve the
expected performance results based on logical regions.

As discussed in Section V-A and shown in Figure 3,
we can assign different operations (e.g., ray casting, image
compositing, and entropy analysis) among different CPUs
and GPUs. In this way, we can maximize the usage of all
computing units. For the tasks assigned to the same type
of processor, Legion employs the work stealing strategy to



2313

balance workload among the processors [2]. In our test with
16 computing nodes and sort-last rendering, we assigned
entropy analysis to CPUs, and assigned 5% of ray casting
workload to CPUs and 95% to GPUs. With Legion’s default
work stealing scheduling, the CPU ray casting time is 1.347
seconds, the CPU entropy time is 0.936 seconds, and the
GPU ray casting time is 2.833 seconds. The principle is
to partition the data into small blocks and the number of
partition is much larger than the current processors, so that
the idle processors can steal the jobs. Here, we partition the
data for the CPU ray casting into 1280 blocks, and the data
for entropy analysis into 1280 blocks. In this case, the image
compositing time and the data access time will be increased,
but the overhead is negligible.

Alternatively, we can manually assign the ratio of the
number of CPU cores on each node for ray casting and
entropy analysis. Given that each node has a 16-core CPU,
we tested different ratios as shown in Figure 9. We can
see that when both ray casting and entropy analysis use 8
cores, we gained the lowest time results that are close to the
ones of the default work-stealing scheduling. This shows that
we can obtain optimal performance for multiple operations
on heterogeneous processors using the built-in scheduler
without exhaust tuning, which is particularly useful for
dynamic operations.

VII. CONCLUSIONS AND FUTURE WORK

We present a study for conducting scientific data analytics
on distributed heterogeneous architectures by leveraging the
Legion programming model and runtime system. We con-
sider both scalability and useability in our design, and show
that our framework can facilitate the implementation and
execution of complex analytics operations with completely
different data partitioning and distribution requirements in
a nearly unified manner. Furthermore, our framework can
perform these operations across CPUs and GPUs and bal-
ance workload by automatic or manual scheduling strategies.
With our framework, users can focus on scientific appli-
cations, rather than the cumbersome data management on
massive heterogeneous processors. In the future, we will
build pipelines among different operations. For example,
we may use entropy analysis to capture data regions with
more information and guide other analytics. We will also
integrate our analytics framework with scientific simulations,
and explore the feasibility to enhance end-to-end scientific
discovery workflows.
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